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Resonant oscillations in closed tubes 
By W. CHESTER 

California Institute of Technology, Pasadena, California? 

(Received 8 July 1963) 

An investigation is made of the disturbances produced in a closed, gas-filled tube 
by the oscillations of a piston at  one end, when the piston oscillates at  near 
resonant frequencies. Within a well-defined frequency band around each reson- 
ant frequency, shock waves appear in the solution; outside this interval the 
oscillations are continuous, but not purely sinusoidal. 

The solution includes the effects of compressive viscosity, and of shear vis- 
cosity in the boundary layer at the walls of the tube. For typical laboratory con- 
ditions the effect of compressive viscosity is found to be quite small (giving a 
shock thickness of the order of 10-4in.). The boundary layer effect can be more 
significant, though the most important modification required of the usual 
acoustic theory is found to arise from the non-linear terms. 

1. Introduction 
This paper discusses the disturbances produced in a gas contained in a tube 

closed at  one end ( x  = 0 )  by a rigid barrier, and at the other (x = L)  by a vibrating 
piston. If the displacement of the piston at  time t is lsinwt (where I 4 L),  then 
acoustic theory says that the particle velocity in the gas is given by 

lw sin (ox/ao)  cos ot 
sin (wL/ao) ’ 

~ U =  

where a. is the speed of sound in the undisturbed gas. 
The result is clearly invalid at  resonant frequencies, where sin (wL/ao) = 0. One 

might argue that the singularity in the amplitude is in practice eliminated by 
dissipative effects, such as viscosity and heat conduction. Now it is true that, if 
the linear theory which leads to equation (1.1) is augmented by some dissipative 
mechanism, then a finite amplitude is predicted for the oscillations, even a t  
resonant frequencies. The essential modification is to replace sin (oL/ao) in the 
denominator of (1.1) by {62+ sin2 (wL/ao))*, where 6 is a non-dimensional coeffi- 
cient of dissipation, depending on the viscosity and heat conduction. However, 
if 6 is small, and this would be so under normal conditions, the result is still 
inadequate in that large amplitudes are predicted and this is inconsistent with 
a linear theory. 

Moreover, experiments show that, in a narrow frequency band around each 
resonant frequency, shock waves appear travelling to and fro in the tube being 
repeatedly reflected from the piston and from the closed end. Near the funda- 
mental frequency one shockwave appears, near the first overtone two shock waves 

t Now at Department of Mathematics, Bristol University. 
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and so on. These shocks are accompanied by a noticeable rise in the amplitude 
of the oscillations compared with the amplitude a t  non-resonant frequencies, 
though it can still be small relative to 27ra,/w. Further information is contained 
in papers by Lettau (1939) and by Saenger & Hudson (1960). Some of the results 
of experiments by Saenger & Hudson are shown in figures 1 and 2 (plates 1 and 2). 

It follows that any attempt to describe the true situation must in some way 
take account of the non-linear aspects of the problem, a conclusion which has 
been noted by previous writers. Thus Saenger & Hudson (1960) consider the 
case in which the piston oscillates at  the fundamental frequency by constructing 
a solution with a built-in shock wave. They start from the assumption that the 
solution is the sum of a continuous part, which is calculated as a power series in 
terms of the small parameter l/L, and a discontinuous part satisfying the shock 
conditions. Compressive viscosity is ignored, but the influence of shear viscosity 
in the boundary layer near the wall of the tube is considered. In  order to retain 
a one-dimensional model, it  is assumed that the effect of friction in the boundary 
layer can be represented by a term in the momentum equation proportional to 
the particle velocity. One aspect of their solution is that the amplitude of the 
oscillations remains finite only by virtue of the action of shear viscosity and heat 
conduction. 

Betchov (1958) also constructs a solution, for resonance at the fundamental 
frequency, on the assumption that it consists of a continuous and a discontinuous 
component. Here, however, the main solution stems from the inviscid equations 
with no dissipative mechanism. The author shows that a disturbance consisting 
of a shock, on either side of which is an oscillatory flow having a frequency equal 
to one-half of the fundamental frequency, is consistent with the boundary con- 
ditions and approximate relations to be satisfied on the characteristics of the 
inviscid equations. This solution is interesting in that the amplitude of the 
oscillation remains small (for small displacements of the piston) albeit of order 
(wZa,,)& in the particle velocity rather than (wl ) ,  the magnitude at  non-resonant 
frequencies. Betchov also discusses the modifying effect of wall friction on his 
solution, assuming, as did Saenger & Hudson, that this effect is equivalent to a 
body force proportional to the velocity. In  both references it is suggested that 
this effect could in practice modify the solution significantly. 

The problem is of sufficient interest to warrant a more detailed discussion 
of the relative importance of the various mechanisms involved in modifying the 
acoustic solution. Another aspect of the problem which suggests itself is the 
question of the transition through near resonant frequencies from a continuous 
acoustic oscillation to one involving a shock wave. 

In  the present paper a deductive argument is presented, and shock waves 
appear as a natural outcome of the solution in a certain well-defined frequency 
band around each resonant frequency. Except for the interior of shock waves 
the influence of viscosity and heat conduction would seem to be in the nature of 
a small correction under normal circumstances, though it would not be too difficult 
to produce situations where they are significant. 

In  $ 2  the appropriate equations for a discussion of the whole problem are 
derived. However, the arguments used to obtain the basic inviscid solution, 
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which are quite simple and straightforward, can be understood from a reading 
of 993 and 4 alone. With the parameters p and 6 equated to zero, and with u and 
a, + a interpreted as the particle velocity and the local speed of sound respectively, 
these two sections are virtually self-contained. 

The remaining sections deal with the modification of the inviscid solution by 
viscosity and heat conduction. 

2. Basic equations 
For the moment we neglect the influence of the wall friction and discuss the 

equations for the one-dimensional problem, 
Provided that disturbances remain small the most significant terms in the 

equations of motion will still be linear, though from the previous discussion 
some account must be taken of the dispersive effects of non-linearity and viscous 
diffusion. When the disturbance is basically a progressive wave, the appropriate 
equations have been discussed by Lighthill ( 1956). The following presentation 
follows Lighthill with only one minor generalization, which leaves the final equa- 
tions unaltered but does not restrict their application only to progressive waves. 

The equations of motion are written as follows: 

(2.1) 

The symbols u, p, p ,  T, S denote respectively the velocitf, density, pressure, 
temperature and entropy in the gas, and p, p,, k are respectively the coefficients of 
viscosity, bulk viscosity and thermal conductivity. The suffix 0 refers to values 
in the undisturbed gas. 

In  a wave of velocity amplitude U and time scale w-l, the appropriate length 
scale is aow-l. Thus the terms in round brackets in equations (2.1)-(2.3) are of 
magnitude O(U/ao) relative to the unbracketed terms, and those in square 
brackets are of relative magnitude O(iw/ai ) ,  where v is the kinematic viscosity. 
All these terms are regarded as significant and are retained, but those in curly 
brackets are of relative order ( d/u,) (vw/a:) and are neglected. 

By (2.3) the entropy changes are merely O(vw/at). To calculate this change, 
retaining only terms of the first order in U/a,  or vw/a2,, equation (2.3) can be 
simplified to as a2T 

p T - = k - -  
O O at Oax2 

and, further, variations in T can be replaced by the corresponding variations in 
particle velocity calculated according to acoustic theory. Thus 

(2.4) 

(y  - 1) k, a2p (y  - 1) k, 2% - 
ypo axat’ YPOPO ax2 - - 
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from which 

within the approximation considered. This result can now be used to evaluate 

- _ -  1 a P q p )  -+ aP ("") - "1 
p a x  d p  .ax as p a x  

7-1 ap (7 - 1) ko a2u 
pocp ax2' 

and when this is substituted in (2 .2 ) ,  the resulting equation is 

where 

(2.7) 

(2.9) 

with vo = ,uo/po and Pr = ,uocp/ko. 
Equations (2.1) and (2.8) are now in the form given by Lighthill (1956). 

They are correct as far as terms whose relative order of magnitude is U/ao or 
vo/af ,  and contain only the variables u and p .  

It should be noted that, within the accuracy of this analysis, the energy equa- 
tion is merely a relation between the entropy changes and the heat conduction 
within the gas. All irreversible changes are negligible and hence it is consistent 
to look for solutions in which all the flow variables oscillate about fixed mean 
values. In  the true situation there will of course be irreversible changes, and 
these must accumulate in a confined region such as a closed tube. But these 
changes operate on a large time scale, and their effect can be regarded simply 
as a modification of the undisturbed state to which the suffix 0 applies. 

We conclude this section with a discussion of the boundary layer on the wall 
of the tube, which is assumed to have a small displacement effect on the main 
flow. To obtain this we first require the solution of the boundary-layer equations, 
and for the present purpose it is adequate to calculate only the most significant 
terms in the solution. For small disturbances, the additional terms arising 
in the boundary layer can be derived from thelinearized boundary layer equations. 
Thus we write 

u = um+ub,  p = pm+pb, (2.10) 

and similarly for the other variables, where urn, pm are the velocity and density 
outside the boundary layer. The additional terms in the boundary layer then 
satisfy 

(2.11) 

(3.12) 

(2.13) 
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where n is a co-ordinate along the inward normal at the wall, and v b  is the velocity 
component in that direction. The component of the momentum equation 
normal to the wall is to be interpreted, as usual, to imply that the pressure is 
unchanged through the boundary layer. Thus p b  = 0 and 

(2.14) 

The solution which satisfies ub +urn = 0 at the wall is, in operational form, 

(2.15) 

where c is the Heaviside operator. 
Also, since the pressure is unchanged through the boundary layer, equation 

(2.16) 

To solve (3.16) completely requires a boundary condition at  the wall, and 
= T, - Tm. Hence this is taken to be T = To, or 

and so 

(2.17) 

(2.18) 

Equation (2.11) now gives 

(2.19) 

and as in (2.5) it is sufficient here to replace the variations in T, by the corre- 
sponding expression in terms of the particle velocity, calculated according to 
acoustic theory. When this is done, and the operational expression is interpreted, 
the result is y -1  aU,(x,t-[)dE 

'b= (:)'(1+3)/0 ax ~ 4 '  _ _  (2.22) 

where the range of integration will in fact be determined by the range for which 
the integrand is non-zero. 

Finally, we require the effect of the boundary layer on the main flow. To retain 
a one-dimensional model, the equation of continuity is integrated over the part 
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of the tube cross-section bounded by the edge of the boundary layer. Thus we 
now write 

/ J ( + + a ~ + v 2 . ( p , v , )  1 dA = 0, (2.23) 

where V,. (p,v,) is the divergence of the momentum in the plane of the cross- 
section. Let the same symbols without a suffix denote average values. Then, 
with the help of the divergence theorem, equation (2.23) becomes 

(2.24) 

where the integral on the right-hand side is taken round the edge of the boundary 
layer and A is the area enclosed by this boundary. Note that the second-order 
term a{(p, -pm) u,}/ax of (2.23) is already O( U/a,) relative to the linear terms. 
Hence, when taking the average of this term, the displacement effect can be 
ignored and the variables regarded as constant over the cross-section within the 
approximation considered.? 

Substitution of (2.22) in (3.24) gives 

where 

(2.25) 

(2.26) 

(2.27) 

Although R should strictly be defined in terms of the boundary of the outer 
flow it can in fact be referred to the boundary of the tube itself without loss of 
accuracy. 

The order of magnitude of the right-hand side of (2.25)) relative to that of 
the linear terms on the left-hand side, is pw-4. Provided that terms whose relative 
order of magnitude is less significant than U/a,,, &w/aE or pw-4 are neglected, the 
momentum equation is not modified and equations (2.8) and (2.25) are adequate 
within the approximation considered. 

cross-sectional area of tube 
perimeter 

and $R = 

If p is replaced by 
a = a,(pjp,)4 (7-1) - a 0 (2.28) 

in (2.8) and (2.25), and the resulting equations suitably combined, one finds that 

t One can also formulate equations for quantities which are averaged over the cross- 
section of the tube itself, rather than the portion outside the boundary layer. Then the 
continuity equation is not modified, but the momentum equation is augmented by a body 
force arising from the shear stress a t  the wall. The two sets of equations are consistent 
within the accuracy of the analysis. 

4 Fluid Meoh. 18 
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( ; - a o ; ) ( u - s )  = - (u-a) -  ax a ( u--- ;:l) 

(2.30) 

Here the acoustic terms have been written on the left, and the various additional 
terms which arise from non-linearity, viscosity and heat conduction appear on 
the right. Note that the local speed of sound will differ slightly from (ao+a) 
because of the entropy variations. 

3. The general solution 
In the preceding discussion it has been implied that the non-linear terms of the 

governing equations may have a significant influence in the determination of 
the solution near resonance. This being so, one might expect that any attempt to 
obtain a solution by perturbation of the linearized approximation would fail. 
This is clearly so if by linearized approximation one means expressions such as 
(1 .1)  and the corresponding expressions for the other flow variables. However, 
if the piston oscillates with small amplitude, and if the resulting disturbance in 
the tube is also of small amplitude, even at resonance, i t  is reasonable to expect 
that at least the significant part of the disturbance is still governed by the 
acoustic equations. The apparent paradox is resolved when one notes that, 
although the acoustic approximation will in general be the significant part of 
the disturbance, this will not be so in the neighbourhood of a node of that approxi- 
mation. At frequencies away from resonance this is not crucial. But if a boundary 
condition is to be applied in such a neighbourhood, a reliable solution cannot be 
obtained unless the first approximation is improved, and the extra terms will 
be all important if the first approximation is locally zero. The following procedure 
is therefore suggested. A first approximation (u,, a,) to (u, a )  is taken to be given 

(3.1) 
by 2 

u1+-a,= 2ao f1 ( t -x /a0 ) ,  
Y - 1  

2 
u1 - -a, = 2a0 f ,(t + x/a,,). 

Y-1 
(3.2) 

At this stage, fi and f2 are arbitrary functions representing the general solutions 
of (2.29) and (2.30) when the terms on the right-hand side are neglected. They 
should be regarded as containing the factors 

and H (  t + x/ao - L/ao), 

respectively, where H i s  the Heaviside unit function. However, we shall be con- 
cerned only with the asymptotic behaviour of the solution for large values of 
the time, and the initial behaviour need be kept in mind only in matters of 
presentation, where integrals such as those occurring on the right-hand sides of 
(2.29) and (2.30) are concerned. 

A second approximation (ul + u2, al + a2) is obtained by iteration. The bound- 
ary conditions at  the ends of the tube are imposed on the second approximation 
only, and not on the intermediate approximation (ul, a& 

H (  t - x/ao - L/ao) 
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To carry out the above procedure requires the solutions of the equations 

2 
(;+ao;) (u2+-a2) Y - 1  = 2aof;(t-x/ao){+(r+ l ) fAt -x /ao)  

+ +(3 - Y)f2( t  +./a,)> + ~ ~ , l { f ; l ( t  - +,) + f a t  + ./a,)> 

-pnoSrn{ f ; ( t -~ /a0 -5 )  0 -ft;(t+x/ao-5)}5-% (3.3) 

+ /3aojm{f;( t  - ./ao - 5) - fat  + xl.0 - 5)}5-%. 

2 
(u2 - q a 2 )  = - 2 a ~ f k ( t  + x / a ~ ) { & ( 3  -7) f1(~ -x/ao) 

+ &Y+ l) f2(t+x/ao)>+ %l{f;( t -x /a , )  +f l ( t+x/ao)}  

(3.4) 

The complementary functions are of the form (3.1), (3.2) and it is sufficient to 
obtain particular integrals. Now, for any functions fi(t - x/ao), f 2 ( t  + x/a,), we 

0 

have 

J 

The boundary condition u = 0 at x = 0 is clearly satisfied if 

f l  = - f 2  =f (say). 
This gives 

= u1+ u 2  = a,f(t - x/ao) - a,f(t + x/a,) 
+ 9(r + 1)  x{f(t - x/ao)f’(t - x/ao) + f ( t  + x/ao)Y(t + x/a,)} 
- k(3  - Y) .O{f’(t - x/a,) F(t + x/ao) -f‘(t + x/a,) F(t - ./a,)} 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
4-2 
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This relation for u is now required to satisfy the boundary condition 

and we are particularly interested in the solution near resonance, that is when 
u = lwcoswt a t  x = L, (3.12) 

lz-Nml W L  < 1 

for some integer N .  
We may therefore write, approximately, 

(3.13) 

o L / a ,  - N n  = tan (wL/a,), (3.14) 

a result which will be required presently to simplify the boundary condition on u. 
It will be assumed here, and verified later, that the appropriate asymptotic 

solution for f is periodic with the same frequency as the piston. The integrals 
which occur in relation (3.11) are also asymptotically periodic with the same 
frequency. Thus, with the help of (3.14) we have, approximately, 

f ( t  + L/a,) = f ( t  - L/a,) + ( 2 / w )  tan (wL/a,)f’(t - L/a,), (3.15) 
and the boundary condition becomes 

lw cos ot = - 2w-la0 tan (wL/ao)f’( t  - L/a,) 

+ (y+  1)Lf(t-L/a,)f’(t-L/a,)+SLa~2f”(t-L/a,) 

(3.16) 
J O  

provided that terms of less significance than those retained are ignored. In  fact, 
if U/a,  is regarded as the amplitude off, the right-hand side of (3.16) is of the form 

The approximation is consistent throughout provided terms whose order of 

The final equation chosen to define f is a simple modification of (3.16). Without 

U(terms whose order of magnitude is tan (wL/a,), U/a,, Sw/ai or Po-&). 

magnitude is less significant than these are neglected. 

loss of accuracy, this equation may be written 

Equation (3.17) has the advantage that it contains the classical acoustic 
solution away from resonance. For, when tan(wL/a,) is not small, f is given 

- _ _ ~ _ _  2 a ~  tan (wL/a,) f ( t ) ,  essentially by lw cos ot 
( y  + 1)  L cos (wL/a,) ( y  + 1) WL 

or (3.18) 

and this yields (1 .1)  when used in (3.1) and (3.2). Thus we may take (3.17) to 
be the uniformly valid equation for f for all frequencies. It can be integrated 
once to give 
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where (3.20) 

(3.21) 

and c is some constant of integration. 
The problem is now reduced to that of solving equation (3.19) for f. At this 

stage it is worth repeating that the main purpose of this refinement of acoustic 
theory is simply to ensure that the boundary condition at the piston is properly 
satisfied. The significant part of the disturbance in the body of the tube is an 
acoustic oscillation in the sense that it satisfies the wave equation, and it is given 
by equation (3.1) and (3.2) once the function f ( =fi = -ti) is known. Inmost 
applications this solution will be quite adequate and no attempt will be made to 
improve upon it in the subsequent analysis. 

4. The inviscid solution 
As a matter of presentation, the inviscid solution is regarded as the basic 

solution and treated separately. In  subsequent sections the other terms which 
contribute to the right-hand side of equation (3.19) will be singled out and their 
modifying effect will be discussed. 

When the effects of viscosity and heat conduction are ignored, equation (3.19) 
may be written (f- 2rs&/77)2 = €(P+ COSZT), (4.1) 
where 27 = w t - i j n ,  (4.2) 

nuo tan (oL/ao) 
r =  

(y  + 1) "LS- (4.3) 

and b is some constant still to be determined. 
Now the appropriate function f for the actual problem should have zero mean 

value. This follows from (3.1) and (3.2) and the fact that both u and a have been 
defined in such a way that their mean values are zero. The continuous solutions 
of (4.1) can be made to satisfy this condition provided Irl > 1. These solutions 
are periodic with the same period as the piston oscillations and may be written 

1 f = €t[Jf*(b2+cos~7)t , 
in the form 2r 

(4.4) 

where the question of sign, and the magnitude of b, are determined by the con- 
dition that the mean value off shall be zero. Thus 

where E is the complete elliptic integral of the second kind, 
For Irl 9 1, (4.4) and (4.5) simplify to 

b2 = (4r2/n2) - +, (4.6) 
- wl sin ot 

2a0 sin (wL/ao) ' f = - ( n d / 8 r )  cos 27 = _______ (4.7) 

which agrees with (3.18) and yields the acoustic solution (1.1). 
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For Irl = 1, b = 0 and the expression for f becomes a rectified sine wave, suit- 
ably displaced so that the mean value is zero. 

For Irl < 1, there is no continuous solution of (4.1) with zero mean value. 
However, one must consider the possibility of a composite solution including 
discontinuities, particularly since shock waves are suspected. Since there are 
two possible continuous solutions of (4.1) for any given value of b, such a com- 
posite solution can certainly be found having zero mean value. However, if b is 
non-zero, such solutions would necessarily contain discontinuities both of 
compression and rarefaction. It is true that acoustic theory shows no preference 
for one type of discontinuity rather than another, but there is sufficient back- 
ground of evidence in gas dynamics to suggest that a discontinuity of rarefaction, 
even within the framework of acoustics, would not be produced by the sinusoidal 
oscillations of a piston, and surely not in the body of the gas away from the 
boundaries. 

There remains the possibility b = 0 (it is clear from (4.1) that b2 can not be 
negative). Here the solutions of (4.1) may be written in the form 

f = 4 ( 2 r / n )  -C cos 71, (4.8) 

and a composite solution can now be obtained with zero mean value and with 
discontinuities of compression only. It is most conveniently defined as a periodic 
function with the same period as the piston oscillations, namely 2n/o in t or 7~ in 7, 
and such that f = €3 [(2r/n)  + cos 7-1, 

sin-lr < 7- < n-+sin-lr, (4.9) 
where - in- < sin-l r < in-. 

This solution has one discontinuity in each complete period, but when (4.9) is 
substitutedin (3.1) and (3.2) the discontinuity is seen to be one of compression and 
represents a weak shock wave travelling up and down the tube. For wL/a, M Nn- 
there are N such shock waves in the tube. In particular at the fundamental 
resonant frequency there is one shock wave which is repeatedly reflected from the 
two ends. The solution for N = 1 and r = 0 is equivalent to that Betchov (1958) 
constructed by a different argument. 

The two solutions (4.4) and (4.9) cover the whole range of r. Figure 3 shows 
some representative diagrams in the vicinity of resonance, and should be com- 
pared with the experimental results shown in figures 1 and 2. For the purpose 
of comparison, the pressure at the closed end of the tube is proportional to f ( t ) .  

Saenger & Hudson (1960) quote a figure of 21-6 cm Hg for the pressure change 
at first resonance due to the arrival of the shock at the closed end. The present 
analysis gives 23.5cmHg; if account is taken of the boundary-layer effect the 
agreement between theory and experiment is much closer. 

One final comment is necessary with reference to the solutions for 1.1 < 1. 
These have been obtained on the assumption that they are periodic with the 
same period as the piston oscillations. If this condition is relaxed other solutions 
are possible. For example, if the piston oscillates at  an even resonant frequency 
(wL/a ,  = Nn- with N an even integer), the function 

f = €tCOS'T (4.10) 
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satisfies all the required conditions. There seems to be no satisfactory argument 
at  this stage to eliminate such a solution. However, it will appear in the next 
section that (4.9) does in fact represent the appropriate solution. 

FIGURE 3. The variation off with r a t  various frequencies near resonance. The dotted 
curves show the modifying effect of the boundary layer when the parameter s = 0.2. 

The piston displacement is in phase with the curves for r < - 1 near an even resonant 
frequency (cos wlla, > 0) and in phase with the curves for r > 1 near an odd resonant 
frequency (cos wlla, < 0). The innermost position of the piston corresponds to a trough 
on the appropriate curve. 

5. Solution with compressive viscosity 
The presentation in $4 is included because of its simplicity, but some readers 

may feel that it  relies too much on intuitive reasoning. An argument which 
is mathematically more satisfactory becomes possible when the effect of com- 
pressive viscosity is included. 

The equation to be considered is, from (4.3), (4.3) and (3.19) with the constant 
c suitably redefined, 

This is Ricatti’s equation. It can be transformed into a linear equation by the 
transformation 
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The function g is then found to satisfy Mathieu's equation 

where 

dr2 *+(d -2qcOs%)g  = 0, (5.3) 

(5.4) 

and d is some constant still to be determined. 
Certain properties of Mathieu functions which are required are discussed 

below. The reference is McLachlan (1947) .  
From (5 .2 )  it  is clear that, iff is to remain bounded, only those solutions of 

(5.3) which are never zero need be considered. For a given value of q,  and appro- 
priate values of d,  there is a class of such solutions which, in general, are of the 
form 

where 7 is a (real) parameter depending on q and d,  and $ is a periodic function 
with period n, also depending on q and d. For 7 + 0,  expressions (5.5) represent 
the two independent solutions of (5.3). When 7 = 0 there is one periodic solution, 
referred to in the literature as ceo(r, 4 ) .  For a given value of q there is a correspond- 
ing value of d, say do, which makes ceo(T, q )  a solution of (5.3). The class of solu- 
tions referred to in (5.5) are all those for which d 6 do. When d = do the other 
solution of (5.3) is not periodic, but is asymptotically proportional to rceo(r, q )  
for large r. Thus it gives the same asymptotic representation for f as does 
ceo(r, q )  and we need consider only the latter function. 

Solutions of the type (5 .5)  give a mean value for the right-hand side of ( 5 . 2 )  
whichis proportional to k 7. Thus ce,is theappropriatesolutionof (5.3) to describe 
the resonant oscillations, since this will give a zero mean value for f when r = 0. 
This case is now considered in detail. 

eT7$(r), e-Vr$( -r) ,  (5.5) 

For sufficiently small values of q,  ceo has the following power series, 
ce, = 1 - *q cos 27 + &q2 cos 47 - &q3((8 cos 67 - 7 cos 27) + O(q4) .  (5.6) 

For sufficiently large values of q,  the asymptotic behaviour is given by 
ce, - const. [&{Po - P,} + %{Po + P,}] ( - 3;. < r < in), (5.7) 

where 

i (12 - 5 C O S 2 T )  + . . ., 1 1 
Po= 1 +  

8q?l cos2 + 128q COS4T 

I sin T +--- (12  + COS2T)  + . . .) sin r PI = 
8q4 ~ 0 5 2  7 128q COS' 

and the value of the constant is not required in the present context. 
Correct to O( l ) ,  the above results give 

(5 .9)  

(5 .10)  
1 1 dce, 1 2 sin (&-) - 2q4 cos r tanh (2q4 sin r )  1 - 

ee,d7- [ 4q*( 1 + lsin T I )  - sinh (4q4 sin 7 )  
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and hence, by (5 .2) )  

1 1 3 sin (47) 
f=agcos7tanh(~pgsin7) I----------- -__ (5.11) [ 4q*(l$[sinr1) sinh(4qgsin~) 

for - *n- < r < +n-, and is periodic with period 7c. 
Note that although (5.7) fails near r = +in, expressions (5.10) and (5.11) 

tend to the (correct) value of zero. A closer inspection of the behaviour of ce, in 
these regions shows that the slope off, as given by (5. ll), is also asymptotically 
correct and the expression may be used in the closed interval -Q7c 6 T 6 Qn 
without modification. 

Relation (5.11) represents a simple refinement of (4.9)) with r = 0,  which shows 
clearly how the actual oscillation jumps from one solution of the inviscid equa- 
tion to the other. 

For intermediate values of q(O(0.05) 2(0-125) 5(0*25) 25)  the coefficients in the 
Fourier series of ce, have been tabulated to nine decimal places by the American 
National Bureau of Standards (1951). 

Some feeling for the size of q in a typical experiment can be obtained from the 
dimensions given by Saenger & Hudson (1960); length of pipe L = 67in., 
radius of pipe R = 0.95in.) piston amplitude 1 = 06125in., first resonant fre- 
quency w12n- = a,/2L = 100*6c/s. From this data one finds that e = 3.1 x 10-3, 
$@/a: = 1.5 x 10-7, q = 2.2 x loll and it is clear that under normal circumstances 
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the effect of compressive viscosity is to produce a very thin shock wave. It is 
easy to see from (3.1) and (5.11) that the shock wave thickness is of order Lq-3, 
which in the above example is lO-*in. Here it would seem reasonable to treat 
the shock wave as a discontinuity and ignore the structure. However, there may 
be circumstances in which q takes smaller values, and since the tables produced 
by the National Bureau of Standards (1951) make calculations over the whole 
range of q a straightforward matter, figure 4 is included to complete the picture. 
It shows how the shock wave develops as q increases. 

A comparison of the results for q = 10 with the approximation 
f = e* cos r tanh (2q3 sin r )  (5.12) 

shows that the maximum error in (5.12) is 12 yo. This is reduced to 0.7 yo if 
(5.11) is used. 

The solutions near resonance are also periodic with period 7~ in T (or 2n/w in t )  
since they can be derived from (5.2) with a function g of the form (5 .5 )  with 7 $. 0. 
But these Mathieu functions are not tabulated, and since the typical situation is 
that for which q 1, the analysis will now be restricted to this range. Then (4.9) 
is easily modified to show the effect of viscosity. In (5.1) put c = Qs and 

(5.13) f = s+((2r/77) + #(r)  COST}. 
The equation then becomes 

#' cos r - # sin r = 2qt( 1 - $2) cos2 7. (5.14) 

In  view of the inviscid solution, # is presumably bounded for large q (though 
not necessarily the derivative of $). Thus (5.14) is approximated to  

or 
# '=2qql-$2)cosr,  -&T<r< &7r, (5.15) 

$ = tanh (2qt(sin r - r ) } .  (5.16) 

Equation (5.13) then gives 

1 f = €4 [5 + cos 7 tanh (24'4 (sin r - r ) }  (5.17) 

for - $ 7 ~  < r < +IT and is periodic with period 7 ~ .  The constant of integration has 
been chosen so that the mean value off is zero. 

The restriction to the range - 471 < r < $77 is necessary because of a difficulty 
analogous to the Stokes phenomenon in complex variable theory. It arises 
because the right-hand side of equation (5.11) does not majorize the neglected 
term # sin 7 uniformly in the neighbourhood of cos r = 0. The asymptotic be- 
haviour of # thus requires special consideration in order to continue the func- 
tion through this point. The general theory is better understood from the 
point of view of linear differential equations (Erddyi 1956), and a more complete 
account for the problem of this paper would start from Mathieu's equation (5.3), 
namely 

dr2 5++2qcos27)g  = 0 

rather than (5.14). The same difficulty is present in (5.3) because, for q 1, the 
appropriate solutions are such that d N - 2q, and so the order of magnitude of 
the term multiplying g is decreased in some neighbourhood of cos 27 = - 1. 
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This means that special techniques are required in order to find the asymptotic 
behaviour of g in the neighbourhood of cos 27 = - 1. A complete and detailed 
account for Mathieu’s equation is given by Langer (1934). In  particular, the 
Langer theory can be used to derive (5.17), and also to show that this expression 
actually gives the correct value for f at the end points r = Qn-. The details are 
involved. 

The continuous solutions of (5.1) are adequately represented by (4.4), and the 
effect of compressive viscosity on these solutions will not be considered. 

6. The boundary layer effect 
It remains to discuss the influence of the boundary layer on the oscillations. 

For simplicity the term representing compressive viscosity will be omitted and 
so, with the constant c suitably redefined, equation (3.19) is equivalent to 

With the substitutions wt-j+jlr = 27, f ( t )  = p(7) ,  equation (6.1) becomes 

Henceforth the bar will be omitted from f ,  and it will be regarded as a function 
of 7. 

Only the asymptotic behaviour off is required, as 7 -+ co, and this is a periodic 
function with period n- and zero mean value. It can therefore be written in the 
form 

and when this is substituted in (6.2) the result is 

where 

J O  

Note that, although the range of integration for the integral appearing in (6.2) 
is really finite, it  can in fact be replaced by the range (0  < 5 < co) for the purpose 
of evaluating the asymptotic behaviour of the integral. For in spite of the presen- 
tation of the basic equations as if one were dealing with an initial value problem, 
once a periodic disturbance is established in the tube the initial conditions 
become irrelevant. It may then be more illuminating to regard the integral 
appearing in (6.4) as the additive effect of the boundary layer from each of the 
components of the spectrum off. 
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The series for h follows at once after the substitution of (6.3) in (6.2) and an 
integration. The integral representation of h can be deduced from the relation 

The real part of (6.7) is the expression for h shown in (6.6). 
The series representations (6.3) for f and (6.6) for h have no constant term 

because the mean value off is zero. 
Equation (6.4) is a non-linear integral equation with no simple closed form 

solution. However, for s < 1, the solution approximates to the inviscid solution, 
and this is known to contain discontinuities for Irl < 1.  On the other hand, for 
s % 1, the non-linear term in (6.4) becomes unimportant and the equation 
approximates to 

Qscos2.r = -47~-1rc&f-2sd f ( t ) h ( 7 - [ ) d t  (6.8) 1: 
(the constant terms are not required). The solution is 

(6.9) 

and this expression is continuous for all values of r .  Unlike the effect of 
compressive viscosity, a term of the type introduced into the equaLion by the 
boundary-layer effect is not likely to smooth out a discontinuity for sufficiently 
small values of s. Whether or not there is a finite critical value of s, above 
which no discontinuities appear, remains an open question. 

The data referring to the experiments of Saenger & Hudson give a value of 
s = 0.25. For such a value, some idea of the effect of the boundary layer can be 
obtained by treating it as a small correction to the inviscid solution. However, 
since at a given resonant frequency s is proportional to the length of the pipe and 
inversely proportional to  the radius, it would not be dificult to produce values of 
s of order unity. 

To solve (6.4) for small values of s and Irl < 1, the first approximation is the 
inviscid solution (4.9). The next approximation will then be the solution of the 
equation 

c + 46 cos 27 + 2seJoI cos th(7 - 5) d[  = { f - 2 r ~ 4 / n } ~  (6.10) 

with an appropriate choice of 8, and c. The constant c must clearly be chosen so 
that the left-hand side is never negative. Also, as in the solution of the inviscid 
equation, unless c is chosen so that the left-hand side is zero for some value of 7 

(giving the solution a real branch point), discontinuities of rarefaction as well 
as compression will appear. This is sufficient to determine c and gives, to an 
adequate approximation, 

- €4 {( 8r /n )  cos 27 + 2s cos (27 + in.)) 
{ (srjn) + 23 s}z + 282 

f = -  - .  

n+61 

for 8, < 7 < n + 01, and otherwise f is periodic with period n. 
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The value of 8, is now determined by the condition that the mean value off 
shall be zero. Hence 

and - in < 8, < &T. Since the solution when s = 0 gives 8, = 8, = sin-1 r as 
the first approximation, it is sufficient to use the equation 

for small values of s. The substitution of 8, for 8, in (6.11) is, however, not 
recommended. This is because, near r = 8, wheref has a discontinuity represent- 
ing the shock wave, the integral appearing in (6.11) behaves like (r-O,)*. The 
variation of such a term is sensitive to a small change in 8,, and its qualitative 
effect on the profile off is too significant to permit the approximation. Physically 
speaking the algebraic behaviour of the integral represents the immediate 
effect of the interaction between the shock wave and the boundary layer or, to 
be more precise, it is the attempt of the present theory to describe this inter- 
action. The approximation is at  its best when the mathematics simulates this 
effect in its rightful place, immediately behind the discontinuity. 

When Irl > 1, the first approximation is given by (4.4)) and the second approxi- 
mation will satisfy the equation 

c+&cos 27- 2sssgnr (b2,+cos2t)*h(r-t)dt = ( f - 2 r ~ * / n } ~ ,  (6.14) 
I O V  

where b, is given by (4.5) and sgnr = 1 if r > 0 and - 1 if r < 0. 
A suitable approximation to the solution of (6.14) is 

L 

+s(b:+cosZr)-* ( b ~ + c o s 2 ~ ) ~ { h ( ~ - ~ ) - h ( n / 2 - ~ ) } d ~ ] ,  (6.15) 

where b, is chosen so that the mean value off is zero. The approximation has been 
written in such a form as to ensure that the correction term remains bounded as 
bo -+ 0. 

Some further details of the calculations used in the evaluation off are given in 
the appendix. The results of these calculations are shown by the dotted curves 
in figure 3 for a value of s = 0.2. In the solutions with a discontinuity the general 
effect of the boundary layer is a lag in phase and a reduction of the amplitude. 
The algebraic behaviour of the term in (6.11) representing the boundary-layer 
effect, referred to above, also softens the profile immediately behind the shock, 
though the discontinuity is not completely eliminated. An interesting property 
of this term is that, although it is continuous and periodic with period n, the 
algebraic behaviour at r = 8,+ is not reproduced as T tends to (8,+n) from 
below. The reason is that both the symmetric and anti-symmetric parts of 
this term behave like (r - 8,)J near T = 8,. They augment each other as T -+ 8, 
from above, but cancel as r + (8, + n) from below. There is thus no marked effect 
on the upstream side of the shock, apart from the reduced amplitude. 
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For Irl > 1 the boundary-layer effect is too small to be represented in figure 3, 
and is shown on a larger scale in figure 5. The main effect is an increase of amplitude 
below resonance ( r  < 0) and a decrease above resonance ( r  > 0). 

The boundary-layer modification when Irl = 1 is not shown because the ap- 
proximate equations used for the other values of r did not seem to be adequate. 
It was clear from the calculations that the main effect is near the cusp of the 
inviscid profile, as one would expect. In this neighbourhood the second approxi- 
mation is most sensitive to the choice of the first approximation, and to iterate on 

I I 

FIGURE 5. The effect of the boundary layer on the continuous 
oscillations near resonance (s = 0.2). 

the solution for s = 0 did not seem sufficiently accurate, at least for s = 0.2. 
These cases may well yield to more detailed calculations based on the original 
equation (6.4), though perhaps the information obtained from the present calcu- 
lations may be considered sufficient. 

This paper was written during a year’s visit by the author to the California 
Institute of Technology. It is a pleasure to acknowledge the many informal dis- 
cussions with Dr G. B. Whitham. I should also like to thank Dr R. A. Saenger 
for his co-operation in providing the photographs which were used in figures 1 
and 2. 

Appendix 
In the calculation off from equation (6.1 l), namely, 

€-*f = (2r/7T)+cos7+- $..elcos e(h(r - $1 -h(+n- - e)}cic, 
COST 0, 

it is convenient to write 

cos ch(r - c i ~  = (2/n-) sin o1 c(r - e,) + (4/n) cos 8, s(r - Q, (A 1) - 
(A 2 )  

cos (2nr - in-) n* sin (2n7 - in) 
where C(7) = c - , 47) = 2 

n=i nt(4n2- 1) n=l 4n2-1 



Resonant oscillations in closed tubes 63 

Then 
2r 2s 

€-&f = -+COS7+- 
Tr Tr COS 7 

x [sin 8, {C(r - 0,) - C($n- - 0,)) + 2 cos 8, {S(r - 8,) - S(Qn - 0,))] (A 3) 

for 81 < r < r+O1, where by (6.12) 

sin 8, = r ,  (A 5) 

with --an- e, G g,, -+Tr G el G tn. 
The functions C(r) ,  S(T) were calculated by summation of the series. These are 

slowly convergent, but the truncation error is easily evaluated from the asymp- 
totic equality 

The following table shows the results of the calculation. Note that 

S N - 0.52663 + (777/2)* near T = 0. 

T I T  C 

0 0.29863 
0-05 0.36888 
0.10 0.37056 
0.15 0,33475 
0.20 0.27407 
0.25 0.19722 
0.30 0.11124 
0.35 0.02227 
0.40 - 0.06420 
0.45 -0.14322 
0.50 - 0.21040 

S 

- 0.52663 
- 0.08587 

0.06286 
0.15886 
0.22298 
0.26260 
0.28150 
0.28198 
0.26587 
0.2 3 4 8 9 
0.19075 

7Ir 
0.55 
0.60 
0.65 
0.70 
0-75 
0.80 
0.85 
0.90 
0.95 
1.00 

C 
-0.26188 
- 0.29442 
- 0.30537 
- 0.29280 
- 0.25543 
-0.19270 
- 0.10477 
0.0 0 7 5 4 
0.14271 
0.29863 

When Irl > 1, the appropriate equation for f is (6.15), namely, 

2r e-4 f = - - sgn r(bf + C O S ~ T ) ~  
Tr 

5 

0.13528 
0-07043 

- 0.00171 
- 0.07900 
- 0.15920 
- 0.24008 
- 0.31934 
- 0.39487 
- 0.46457 
- 0.52663 

If we define 

then (6.15) can be written 



64 W.  Chester 

where I *  
B(7) = - 3 n-* (cos (2n7 - nn- - $77) - cos $7~) {J,-, - J,+l} (A 9) 

477 n=l  

and the constants b, and b, are determined from the relations 

Equation (A 7) for J, is unsuitable for computation when n is large, but the 
integral can be transformed to give 

where cot a = b, and the integration is taken round the unit circle in the complex 
z-plane. The integrand has two branch points inside the unit circle, at z = 0 
and z = tan2 (&a). Thus the path of integration can be deformed into the two 
sides of the branch cut from z = 0 to z = tan2 (4.). This gives 

tan &a)2n--1 cos2nldc 
(cot4 - C O S ~  [)* 

. (A13) 
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FIGURE 1.  Pressure variation observed at the closed end of a 1.9 in. diameter tube of 
length 67 in. for frequencies near the fundamental frequency of 100.6 cjs. The piston ampli- 
tude is 0.125 in. Whenever a dot appears on the records, the piston is at  its inmost position 
in the tube. (Reproduced with the permission of Dr R. A. Saenger.) 
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